首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   4篇
  国内免费   1篇
测绘学   7篇
大气科学   8篇
地球物理   34篇
地质学   43篇
海洋学   24篇
天文学   16篇
综合类   1篇
自然地理   27篇
  2023年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2013年   19篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1966年   1篇
  1939年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
21.
Underwater observatories with real-time data and virtually unlimited power transmission capabilities compared to traditional oceanographic moorings are beginning to provide scientists with continuous access to the coastal and open ocean. However, for any coastal observatory to serve as a cost-effective system for the collection of long-term scientific and environmental data, it must have a simple, upgradeable power and telemetry system and an instrument interface that is compatible with existing standards. It must be designed for extended environmental exposure and ease of service to avoid high maintenance costs. Most importantly, the observatory must be accessible to all potential users, including students, scientists, engineers, and policy makers. This strategy was applied to the design of the Martha's Vineyard Coastal Observatory on the south shore of the island of Martha's Vineyard. The new facility, and in particular its system architecture, as developed by the Woods Hole Oceanographic Institution with support from the National Science Foundation, are described  相似文献   
22.
This article describes results from a research project undertaken to explore the technical issues associated with integrating unstructured crowd sourced data with authoritative national mapping data. The ultimate objective is to develop methodologies to ensure the feature enrichment of authoritative data, using crowd sourced data. Users increasingly find that they wish to use data from both kinds of geographic data sources. Different techniques and methodologies can be developed to solve this problem. In our previous research, a position map matching algorithm was developed for integrating authoritative and crowd sourced road vector data, and showed promising results ( Anand et al. 2010 ). However, especially when integrating different forms of data at the feature level, these techniques are often time consuming and are more computationally intensive than other techniques available. To tackle these problems, this project aims at developing a methodology for automated conflict resolution, linking and merging of geographical information from disparate authoritative and crowd‐sourced data sources. This article describes research undertaken by the authors on the design, implementation, and evaluation of algorithms and procedures for producing a coherent ontology from disparate geospatial data sources. To integrate road vector data from disparate sources, the method presented in this article first converts input data sets to ontologies, and then merges these ontologies into a new ontology. This new ontology is then checked and modified to ensure that it is consistent. The developed methodology can deal with topological and geometry inconsistency and provide more flexibility for geospatial information merging.  相似文献   
23.
For all its vitality political ecology often appears to be a project in which work by Anglo‐Americans in particular, if it is not privileged, certainly predominates. This trend reflects wider language and intellectual tendencies in human geography and the social sciences that distort the development of the field by downplaying or obscuring the contributions of many non‐Anglo‐Americans and by naturalizing Anglo‐American assumptions at the heart of research. The latter in turn determine what constitutes ‘good’ work – even as there is no single definition of political ecology. Arguing against this tendency, this paper draws on postcolonial thinking to emphasize the need to reassess and reorient the field as ‘other’ political ecologies are feasible and desirable.  相似文献   
24.
Simulation study of a follow-on gravity mission to GRACE   总被引:9,自引:3,他引:6  
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth’s time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to ~0.6 nm/s as compared to ~0.2 μm/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (~480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of ~250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.  相似文献   
25.
A total of 1,014 measures of sediment shear strengths were measured by means of miniature vane shear and fall cone tests on five gravity cores collected in Eckernfo‐erde Bay, Baltic Sea. Paired t test was used to compare the shear strengths measured by the two methods. It was found that fall cone strength calculated with Wood's K60value (0.29) overestimates the vane shear strength by 0.15 kPa (a = 0.001) and the sample mean of the fall cone strength is 4.1% higher than the mean of the vane shear strength. However, fall cone strength calculated with Hansbo's K60 value (0.24) underestimates the vane shear strength by 0.88 kPa (a = 0.001), and the sample mean of the fall cone strength is 13.8% less than the mean of the vane shear strength. Both calculated fall cone strengths are significantly different from the vane shear strength, with a p value of less than 0.001. Regression analysis of the Echernfoerde Bay data indicates that a new K60 value is 0.275 with a confidence interval (a = 0.01) from 0.2704 to 0.2786. Paired t test shows that there is no significant difference between miniature vane shear and fall cone tests for these samples if the fall cone strength is calculated with K60 = 0.275.  相似文献   
26.
Abstract

This report describes the instrumentation, initial results, and progress of an experiment designed to measure and monitor submarine sediment pore water and hydrostatic pressures in a selected area of the Mississippi Delta. The experiment also is intended to monitor significant pressure perturbations during active storm periods. Initial analysis of the data revealed excess pore water pressures in the silty clay sediment at selected depths below the mudline. Continuous monitoring of the pore water and hydrostatic pressures was expected to reveal important information regarding sediment pore water pressure variations as a function of the geological processes active in the Mississippi Delta.  相似文献   
27.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   
28.
 Scanning and transmission electron microscopic analyses of shale samples from offshore Louisiana, USA, Gulf of Mexico, reveal the relationship between mineralogical and microfabric changes during burial diagenesis. The local geopressured zone begins at 2200-m depth. Above that depth the shales are smectite-rich, generally lack particle orientation, and contain appreciable pores. Below the 2200-m depth, the shales become more illite-rich with increasing burial, more crystalline, and less porous. Microfabric changes are mainly caused by compaction during burial diagenesis; mineralogical changes (smectite-to-illite) and crystal growth also play an important role in fabric alteration during deep burial diagenesis. Received: 12 May 1998 / Revision received: 14 July 1998  相似文献   
29.
Deep (> 5 m) sheeting fractures in the Navajo sandstone are evident at numerous sites in southern Utah and derive from tectonic stresses. Strong diurnal thermal cycles are, however, the likely triggers for shallow (< 0.3 m) sheeting fractures. Data from subsurface thermal sensors reveal that large temperature differences between sensors at 2 and 15 cm depth on clear summer afternoons are as great as those that trigger sheeting fractures in exposed California granite. Extensive polygonal patterns in the Navajo sandstone are composed of surface-perpendicular fractures and were produced by contractile stresses. Numerous studies have shown that porewater diminishes the tensile strength of sandstone. Based on our thermal records, we propose that cooling during monsoonal rainstorms triggers polygonal fracturing of temporarily weakened rock. On steep outcrops, polygonal patterns are rectilinear and orthogonal, with T-vertices. Lower-angle slopes host hexagonal patterns (defined by the dominance of Y-vertices). Intermediate patterns with rectangles and hexagons of similar scale are common. We posit that outcropping fractures are advancing downward by iterative steps, and that hexagons on sandstone surfaces (like prismatic columns of basalt) have evolved from ancestral orthogonal polygons of similar scale. In lava flows, fractures elongate intermittently as they follow a steep thermal gradient (the source of stress) as it rapidly moves through the rock mass. In our model, a steep, surficial thermal gradient descends through unfractured sandstone, but at the slow pace of granular disintegration. Through time, as the friable rock on stable slopes erodes, iterative cracking advances into new space. Hexagonal patterns form as new fractures, imperfectly guided by the older ones, propagate in new directions, and vertices drift into a configuration that minimizes the ratio of fracture length to polygon area. © 2020 John Wiley & Sons, Ltd.  相似文献   
30.
Backward erosion piping involves the gradual removal of granular material under the action of water flow from the foundation of a dam or levee, whereby shallow pipes are formed that grow in the direction opposite to the flow. This pipe-forming process can ultimately lead to failure of a water-retaining structure and is considered one of the most important failure mechanisms for dikes and levees in the Netherlands and the United States. Modeling of this mechanism requires the assessment of hydraulic conditions in the pipe, which are controlled by the particle equilibrium at the pipe wall. Since the pipe's dimensions are controlled by the inflow to the pipe from the porous medium, the flow through the pipe is thought to be laminar for fine- to medium-grained sands. The literature provides data for incipient motion in laminar flow, which is reviewed here and complemented with data from backward erosion experiments. The experiments illustrate the applicability of the laminar incipient motion data to determine the erosion pipe dimensions and corresponding pipe hydraulics for fine- to medium-grained sands, for the purpose of backward erosion piping modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号